CMIP6 Model Analysis Workshop
25-28 March 2019, Barcelona

PROGRAMME

Monday, March 25

11:00-13:00 Registration
13:00 Start of the meeting
13:00-14:15 Keynote presentations
 • CMIP6 modelling status and goals the workshop V. Eyring
 • AR6 WG1 G. Flato

14:15-15:30 Session 1: MIP overviews, model group overviews and infrastructure
 • 2-minute presentations from poster presenters in Session 1

15:30-16:00 Coffee break

16:00-17:30 Session 1: MIP overviews, model group overviews and infrastructure
 • Poster viewing for Session 1

Tuesday, March 26

9:00-10:15 Session 2: Forcing and Feedbacks
 • 2-minute presentations from poster presenters in Session 1

10:15-10:45 Coffee break

10:45-12:15 Session 2: Forcing and Feedbacks
 • Poster viewing for Session 2

12:15-13:30 Lunch - Lunchtime session on CMIP6 links to VIACS community

13:30-14:15 Keynote presentations
 • CMIP6 infrastructure status K. Taylor
 • WMO new strategy and opportunities to strengthen CMIP P. Kabat:

14:15-15:30 Session 3: Uncertainty, biases and constraints
 • 2-minute presentations from poster presenters in Session 3

15:30-16:00 Coffee break

16:00-17:30 Session 3: Uncertainty, biases and constraints
 • Poster viewing for Session 3

19:00-21:30 Icebreaker
 MACBA (Paça dels Angels 1, Barcelona)

*BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
Wednesday, March 27

Joint day with PRIMAVERA

9:00-10:15 **Session 4: High resolution**
- 2-minute presentations from poster presenters in Session 4

10:15-10:45 **Coffee break**

10:45-12:15 **Session 4: High resolution**
- Poster viewing for Session 4

12:15-13:30 **Lunch**

13:30-14:15 **Keynote presentations**
- High Resolution Modelling
 M. Roberts / P. L. Vidale

14:15-15:30 **Session 5: Variability and extremes**
- 2-minute presentations from poster presenters in Session 5

15:30-16:00 **Coffee break**

16:00-17:30 **Session 5: Variability and extremes**
- Poster viewing for Session 5

Thursday, March 28

9:00-10:15 **Session 6: Future Projections**
- 2-minute presentations from poster presenters in Session 6

10:15-10:45 **Coffee break**

10:45-12:15 **Session 6: Future Projections**
- Poster viewing for Session 6

12:15-13:30 **Lunch**

13:30-13:50 **Keynote presentation**
- Integrated Assessment Modelling and emission pathways and the connections to global Earth System models
 J. Rogelj:

13:50-14:30 **Session 7: Regional and impacts**
- 2-minute presentations from poster presenters in Session 7

14:30-16:00 **Session 7: Regional and impacts**
- Poster viewing for Session 7

16:00-16:30 **Coffee break**

16:30-17:30 **Final discussion including emerging properties of CMIP6 ensemble and way forward toward CMIP7**

BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
POSTER LIST

Monday, March 25 (PM)

Session 1: MIP overviews, model group overviews and infrastructure

<table>
<thead>
<tr>
<th>Poster No.</th>
<th>Name</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-P01</td>
<td>BAO</td>
<td>Qing</td>
<td>Tropical Precipitation Variability In the CAS FGOALS-f3-H</td>
</tr>
<tr>
<td>1-P02</td>
<td>BOCK</td>
<td>Lisa</td>
<td>CMIP6 Evaluation with the ESMValTool</td>
</tr>
<tr>
<td>1-P03</td>
<td>BOUCHER</td>
<td>Olivier</td>
<td>Analysis of the IPSL-CM6-LR ensemble of historical experiments</td>
</tr>
<tr>
<td>1-P04</td>
<td>DANABASOGLU</td>
<td>Gokhan</td>
<td>Community Earth System Model version 2 (CESM2)</td>
</tr>
<tr>
<td>1-P05</td>
<td>DOESCHER</td>
<td>Ralf</td>
<td>The physical performance and variability of first EC-Earth transient simulation ensemble under CMIP6.</td>
</tr>
<tr>
<td>1-P06</td>
<td>GOPINATHAN</td>
<td>Prajeesh</td>
<td>Indian Ocean Dipole and its linkage to South Asian Monsoon in IITM-ESM</td>
</tr>
<tr>
<td>1-P07</td>
<td>GUTOWSKI</td>
<td>William</td>
<td>WCRP CORDEX: A Diagnostic MIP for CMIP6</td>
</tr>
<tr>
<td>1-P08</td>
<td>ISHII</td>
<td>Masayoshi</td>
<td>The MRI Earth System Model ver. 2.0 (MRI-ESM2.0): Basic evaluation of the physical component</td>
</tr>
<tr>
<td>1-P09</td>
<td>JOHN</td>
<td>Jasmin</td>
<td>GFDL's contributions to CMIP6 - highlights from GFDL CM4 and ESM4</td>
</tr>
<tr>
<td>1-P10</td>
<td>JONES</td>
<td>Colin</td>
<td>The UK Earth system model contribution to CMIP6: First results</td>
</tr>
<tr>
<td>1-P11</td>
<td>JOSEPH</td>
<td>Renu</td>
<td>Overview of US Department of Energy’s efforts on Model Diagnostics and Metrics for Understanding and Quantifying Model Biases</td>
</tr>
<tr>
<td>1-P12</td>
<td>JUCKES</td>
<td>Martin</td>
<td>The role of the IPCC Data Distribution Centre in supporting assessments of climate change</td>
</tr>
<tr>
<td>1-P13</td>
<td>KAGEYAMA</td>
<td>Masa</td>
<td>PMIP4-CMIP6 simulations of the Last Glacial Maximum climate: first results</td>
</tr>
<tr>
<td>1-P14</td>
<td>KIM</td>
<td>Youngho</td>
<td>Diagnosis of model bias improvement of KIOST Earth System Model</td>
</tr>
<tr>
<td>1-P15</td>
<td>KRASTING</td>
<td>John</td>
<td>Development of Process-oriented Diagnostics through NOAA’s Climate Model Development Task Force</td>
</tr>
<tr>
<td>1-P16</td>
<td>LAWRENCE</td>
<td>David</td>
<td>Advancing our understanding of the impacts of historic and projected land use in the Earth System: The Land Use Model Intercomparison Project (LUMIP)</td>
</tr>
<tr>
<td>1-P17</td>
<td>LEUNG</td>
<td>Ruby</td>
<td>The Energy Exascale Earth System Model (E3SM) version 1: Evaluation and Analysis of Climate Sensitivity</td>
</tr>
<tr>
<td>1-P18</td>
<td>NOBRE</td>
<td>Paulo</td>
<td>BESM developments towards CMIP6</td>
</tr>
<tr>
<td>1-P19</td>
<td>PASCOE</td>
<td>Charlotte</td>
<td>Comparison of Earth system models through effective documentation of models and insight about the implementation of forcings</td>
</tr>
<tr>
<td>1-P20</td>
<td>GLECKLER</td>
<td>Peter</td>
<td>Gauging systematic biases across CMIP generations</td>
</tr>
<tr>
<td>1-P21</td>
<td>STOCKHAUSE</td>
<td>Martina</td>
<td>The importance of data references in CMIP6 data usage and IPCC climate assessments</td>
</tr>
<tr>
<td>1-P22</td>
<td>SUN</td>
<td>Minah</td>
<td>Diagnosing climate response and feedback in response to idealized CO2 forgin in K-ACE</td>
</tr>
<tr>
<td>1-P23</td>
<td>TAYLOR</td>
<td>Karl</td>
<td>input4MIPs: Getting CMIP forcing data in better shape</td>
</tr>
<tr>
<td>1-P24</td>
<td>TEBALDI</td>
<td>Claudia</td>
<td>An overview of the first results from ScenarioMIP experiments</td>
</tr>
</tbody>
</table>

BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
<table>
<thead>
<tr>
<th>Session 2: Forcing and Feedbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-P01 ALBRIGHT Anna Lea</td>
</tr>
<tr>
<td>2-P02 CLEATOR Sean</td>
</tr>
<tr>
<td>2-P03 COLLINS William</td>
</tr>
<tr>
<td>2-P04 CVIJANOVIC Ivana</td>
</tr>
<tr>
<td>2-P05 DOUVILLE HervŽ</td>
</tr>
<tr>
<td>2-P06 GASTINEAU Guillaume</td>
</tr>
<tr>
<td>2-P07 GIER Bettina</td>
</tr>
<tr>
<td>2-P08 GINOUX Paul</td>
</tr>
<tr>
<td>2-P09 HARDIMAN Steven</td>
</tr>
<tr>
<td>2-P10 HUANG Xin</td>
</tr>
<tr>
<td>2-P11 JI Duoying</td>
</tr>
<tr>
<td>2-P12 KNUTTI Reto</td>
</tr>
<tr>
<td>2-P13 KOSHIRO Tsuyoshi</td>
</tr>
<tr>
<td>2-P14 KRAMER Ryan</td>
</tr>
</tbody>
</table>

*BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
<table>
<thead>
<tr>
<th>Session 3: Uncertainty, biases and constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-P01 ACOSTA NAVARRO, Juan Camilo</td>
</tr>
<tr>
<td>3-P02 BEADLING, Rebecca</td>
</tr>
<tr>
<td>3-P03 BHOMIA, Swati</td>
</tr>
<tr>
<td>3-P04 BRUNNER, Lukas</td>
</tr>
<tr>
<td>3-P05 CRUZ-GARCIA, Ruben</td>
</tr>
</tbody>
</table>

BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
A framework to determine the limits of achievable skill for interannual to decadal climate predictions

Understanding CMIP Simulation Biases with NCAR's Climate Model Assessment Tool

Application of a Big Data approach to constrain projection-based estimates of the future North Atlantic Carbon Uptake

Benchmarking CMIP Terrestrial Carbon Cycle and Biogeochemistry Models with the ILAMB Package

An emergent constraint on ocean acidification in the subsurface layers based on multi-model analysis

Long-term Balances and Variabilities of Surface Energy and Water Cycles: Preliminary Results from LS3MIP and GSWP3

A new diagnostic tool for the energy budgets and transports in climate models

Can we beat climate model democracy in multi-model ensemble projections?

Bias patterns of 6 daily land surface variables in CMIP5 models and consequences of bias adjustment in terms of changes and associated uncertainty at the end of the century under RCP 8.5

Simulations and evaluations of the version 1.0 of the E3SM Land Model (ELM) for the LS3MIP

Climate response to the Pinatubo and Tambora eruptions in EC-Earth3.2

Estimating the Uncertainty in Climate Projections

CMIP5/CMIP6 model-analog seasonal forecast skill: a metric for model evaluation of ENSO dynamics

Uncertainty in Earth System Models: Benchmarks for Ocean Model Performance and Validation

Investigating drivers of midlatitude circulation biases in climate hindcast ensembles

Potential Predictability Horizon of atmospheric CO2 concentrations in CMIP6 simulations

Development of a new climate model emulator based on CMIP6 multi-model ensemble

Benchmarking the simulated global carbon cycle of CMIP6 ESMs using atmospheric CO2 flask measurements

Wednesday, March 27 (AM)

Session 4: High resolution

Mesoscale air-sea interactions in Kuroshio Extension region during winter season simulated by a High-resolution Coupled GCM

Running the EC-Earth model at ultra-high resolution: challenges and benefits

North Atlantic post-tropical cyclones in reanalysis datasets

BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
<table>
<thead>
<tr>
<th>Code</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-P04</td>
<td>BELLUCCI</td>
<td>Air-Sea interactions over the Gulf Stream in an ensemble of HighResMIP present climate simulations</td>
</tr>
<tr>
<td>4-P05</td>
<td>BRAYSHAW</td>
<td>Influence of changes in large-scale circulation on surface wind projections for wind power over Europe</td>
</tr>
<tr>
<td>4-P06</td>
<td>DOCQUIER</td>
<td>Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport</td>
</tr>
<tr>
<td>4-P07</td>
<td>FABIANO</td>
<td>Impact of stochastic physics on climate simulations with EC-Earth: looking at the atmosphere</td>
</tr>
<tr>
<td>4-P08</td>
<td>FIELD</td>
<td>Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations</td>
</tr>
<tr>
<td>4-P09</td>
<td>FUENTES</td>
<td>Impact of changes in atmospheric and ocean model resolution on modes of variability in historical coupled model simulations</td>
</tr>
<tr>
<td>4-P10</td>
<td>GUTJAHR</td>
<td>Towards an energetically consistent vertical ocean mixing scheme in MPI-ESM</td>
</tr>
<tr>
<td>4-P11</td>
<td>HAARSMA</td>
<td>Extra-tropical transition of Atlantic hurricanes in PRIMAVERA HighResMIP Tier 1 simulations</td>
</tr>
<tr>
<td>4-P12</td>
<td>HEWITT</td>
<td>Critical Southern Ocean climate model biases traced to atmospheric model cloud errors</td>
</tr>
<tr>
<td>4-P14</td>
<td>KOENIGK</td>
<td>Deep water formation in the North Atlantic Ocean in high resolution global coupled climate models</td>
</tr>
<tr>
<td>4-P15</td>
<td>LEUNG</td>
<td>Analysis of Mesoscale Convective Systems in MPAS-CAMS High Resolution and Convection Permitting Simulations</td>
</tr>
<tr>
<td>4-P16</td>
<td>MAURER</td>
<td>Climate modeling with a multi-grid approach</td>
</tr>
<tr>
<td>4-P17</td>
<td>MCCOY</td>
<td>Cloud feedbacks in extratropical cyclones and anti-cyclones: insight from long-term satellite data and high-resolution global simulations</td>
</tr>
<tr>
<td>4-P18</td>
<td>MECCIA</td>
<td>Impact of stochastic physics on climate simulations with EC-Earth: looking at the ocean.</td>
</tr>
<tr>
<td>4-P19</td>
<td>MINOBE</td>
<td>Bomb Cyclones in PRIMAVERA Simulations</td>
</tr>
<tr>
<td>4-P20</td>
<td>MOISE</td>
<td>Temporal and spatial intermittency of sub-daily precipitation in Australian monsoon and maritime continent linked to GCM precipitation biases</td>
</tr>
<tr>
<td>4-P21</td>
<td>PEANO</td>
<td>Moisture transport associated to Tropical Cyclones.</td>
</tr>
<tr>
<td>4-P22</td>
<td>REED</td>
<td>Quantifying tropical cyclone rainfall and size in high resolution climate simulations</td>
</tr>
<tr>
<td>4-P23</td>
<td>ROBERTS</td>
<td>Coordinated Global High Resolution Climate Modelling ? PRIMAVERA and CMIP6 HighResMIP</td>
</tr>
<tr>
<td>4-P24</td>
<td>SEIN</td>
<td>Sensitivity of Atlantic Ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM</td>
</tr>
<tr>
<td>4-P25</td>
<td>TERRAY</td>
<td>Attribution of recent changes in extreme weather over Europe</td>
</tr>
<tr>
<td>4-P26</td>
<td>TU</td>
<td>Projection of Tropical Cyclone Activity in the Western North Pacific Using a Single Column Ocean Coupled Model</td>
</tr>
<tr>
<td>4-P27</td>
<td>VIDALE</td>
<td>The role of Stochastic Physics and model resolution for the simulation of Tropical Cyclones in AGCMs</td>
</tr>
<tr>
<td>4-P28</td>
<td>VON STORCH</td>
<td>Role of ocean mesoscale eddies for the response of climate system to strong greenhouse gas forcing</td>
</tr>
</tbody>
</table>

BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
<table>
<thead>
<tr>
<th>Session 5: Variability and extremes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-P01 BEFORT Daniel</td>
</tr>
<tr>
<td>5-P02 BORCHERT Leonard</td>
</tr>
<tr>
<td>5-P03 CADULE Patricia</td>
</tr>
<tr>
<td>5-P04 CALVO Natalia</td>
</tr>
<tr>
<td>5-P05 CASSOU Christophe</td>
</tr>
<tr>
<td>5-P06 CHEN Cheng-Ta</td>
</tr>
<tr>
<td>5-P07 CORTI Susanna</td>
</tr>
<tr>
<td>5-P08 FISCHER Erich</td>
</tr>
<tr>
<td>5-P09 GANGADHARAN Nidheesh</td>
</tr>
<tr>
<td>5-P10 JACKSON Laura</td>
</tr>
<tr>
<td>5-P11 JIANG Jie</td>
</tr>
<tr>
<td>5-P12 JORDA Gabriel</td>
</tr>
<tr>
<td>5-P13 LEE Jiwoo</td>
</tr>
<tr>
<td>5-P14 LI Camille</td>
</tr>
<tr>
<td>5-P15 LI Hongmei</td>
</tr>
<tr>
<td>5-P17 MORENO-CHAMARRO Eduardo</td>
</tr>
<tr>
<td>5-P18 ORTEGA Pablo</td>
</tr>
<tr>
<td>5-P19 PALMEIRO Froila</td>
</tr>
</tbody>
</table>

* BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
Session 6: Future Projections

<table>
<thead>
<tr>
<th>6-P01</th>
<th>ACHUTARAO</th>
<th>Krishna</th>
<th>On the Causes of Poleward Shift of the Indian Summer Monsoon Low Level Jetstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-P02</td>
<td>ARBLASTER</td>
<td>Julie</td>
<td>Contrasting methods of detecting and attributing the impact of external forcings</td>
</tr>
<tr>
<td>6-P03</td>
<td>BILBAO</td>
<td>Roberto</td>
<td>Attribution of Ocean Temperature Change to Anthropogenic and Natural Forcings using the Temporal, Vertical and Geographical Structure</td>
</tr>
<tr>
<td>6-P04</td>
<td>BRACONNOT</td>
<td>Pascale</td>
<td>Implication of Mid Holocene and Last Interglacial changes in insolation seasonality on high and mid latitude climate</td>
</tr>
<tr>
<td>6-P05</td>
<td>BRIERLEY</td>
<td>Chris</td>
<td>The response of climate variability in PMIP4/CMIP6</td>
</tr>
<tr>
<td>6-P06</td>
<td>CAI</td>
<td>Wenju</td>
<td>Increased variability of Eastern Pacific El Niño–o surface temperature under greenhouse warming</td>
</tr>
<tr>
<td>6-P07</td>
<td>EASTERLING</td>
<td>David</td>
<td>Climate Scenarios for the Fifth United States National Climate Assessment</td>
</tr>
<tr>
<td>6-P08</td>
<td>FRIEDLINGSTEIN</td>
<td>Pierre</td>
<td>Transient Climate Response to Cumulative Emissions in CMIP6 models. Preliminary results from the C4MIP experiments</td>
</tr>
<tr>
<td>6-P09</td>
<td>FROELICHER</td>
<td>Thomas</td>
<td>Assessing the robustness of marine heatwave projections</td>
</tr>
<tr>
<td>6-P10</td>
<td>FU</td>
<td>Qiang</td>
<td>Responses of terrestrial aridity to climate change and global dry land expansions</td>
</tr>
<tr>
<td>6-P11</td>
<td>HARRISON</td>
<td>Sandy</td>
<td>Evaluation of the PMIP4/CMIP6 palaeosimulations</td>
</tr>
<tr>
<td>6-P12</td>
<td>HIROKAZU</td>
<td>Endo</td>
<td>Monsoon precipitation responses to global warming and their regional differences simulated by CMIP models</td>
</tr>
</tbody>
</table>

BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
6-P13	ILYINA Tatiana	How far is the carbon sink predictable in a multi-model framework?
6-P14	ITO Gen	The Global Carbon Cycle emissions driven simulations in the NASA-GISS climate model
6-P15	JUNGLAUS Johann	Transient simulations over the Common Era using comprehensive Earth System Models: The PMIP4/CMIP6 past2k experiment
6-P16	KUHLBRODT Till	Regional and vertical structure of ocean heat uptake in the UKESM1 CMIP6 simulations of the historical climate
6-P17	LIDDICOAT Spencer	A multi-model analysis of the historical carbon fluxes and compatible fossil fuel emissions in CMIP6 Models
6-P18	MANZINI Elisa	Stratosphere-Troposphere Circulation Changes
6-P19	MENEGOZ Martin	Present and future seasonal land snow cover simulated by CMIP coupled climate models
6-P20	PAIK Seungmok	Attribution of the observed intensification of extreme precipitation over dry and wet regions
6-P21	MUNTJEWERF Laura	Future evolution of the Greenland ice sheet in a coupled climate and ice sheet model (CESM-CISM)
6-P22	ORR James	Seasonal amplification, phase shift, and uncertainties for ocean acidity during the 21st century
6-P23	PALMIERI Julien	Regional analysis of present and future marine productivity
6-P24	PARK In-Hong	Attributing the Indo-Pacific warm pool expansion: seasonal changes and its impacts on precipitation
6-P25	PUTRASAHAN Dian	Detecting changes in North Atlantic variability under global warming
6-P26	QUAGRAINE Kwesi	Assessing co-behaviour of climate processes over southern Africa using CMIP5 Models
6-P27	REN Liwen	Detection and attribution of anthropogenic dynamical and thermodynamical contributions in extreme events over East Asia based on CMIP6 DAMIP
6-P28	SEFERIAN Roland	Tracking the impact of climate model complexity in future climate projections
6-P29	SIERRA Carlos	The lifetime of fossil-fuel derived carbon
6-P30	STACKE Tobias	Multi-model analysis of the climatic effects of idealized global deforestation experiments
6-P31	YOOL Andrew	What’s up with what’s going down? Trends in primary and export production

Thursday, March 28 (PM)

Session 7: Regional and Impacts

7-P01	AKANDE Samuel	Multi-Model Climate Vulnerability, Impacts And Adaptation Assessments Of Extreme Ocean Events In Gulf-Of-Guinea Coasts
7-P02	BLOCKLEY Ed	Inter-comparison of the mass budget of Arctic sea ice and snow in CMIP6 models
7-P03	CABRE Maria Fernanda	Impacts of Climate Change on Agricultural Systems

BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.
<table>
<thead>
<tr>
<th>Session Code</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-P04</td>
<td>DIAZ Leandro</td>
<td>Prediction skill assessment of large-scale variability influence in summer southeastern South America rainfall in multi-model CMIP decadal predictions</td>
</tr>
<tr>
<td>7-P05</td>
<td>FOTSO NGUEMO Thierry Christian</td>
<td>Projected trends of heavy rainfall events from CMIP5 models over Central Africa</td>
</tr>
<tr>
<td>7-P07</td>
<td>LI Jianxio</td>
<td>Fidelity of the CAS FGOALS-f3 in representation of summer rainfall climatology and extreme precipitation over Tibetan Plateau</td>
</tr>
<tr>
<td>7-P08</td>
<td>MALYSHEV Sergey</td>
<td>Contribution of land use and land cover alterations to changes in regional surface energy balance in CMIP6 Earth System models.</td>
</tr>
<tr>
<td>7-P09</td>
<td>MBAYE Mamadou Lamine</td>
<td>Evaluation of the CNRM-CM6 Global Climate Model simulation over West Africa within CMIP6</td>
</tr>
<tr>
<td>7-P10</td>
<td>NDETATSIN TAGUELA Thierry</td>
<td>Rainfall in MetUM over Central Africa: Process-Based Evaluation</td>
</tr>
<tr>
<td>7-P11</td>
<td>NIKULIN Grigory</td>
<td>How dynamical downscaling can advance our understanding of large- and local-scale drivers of regional climate change</td>
</tr>
<tr>
<td>7-P12</td>
<td>PEREIRA Bruno</td>
<td>Challenges for Brazilian Earth System Model (BESM)</td>
</tr>
<tr>
<td>7-P13</td>
<td>PINTO Izidine</td>
<td>Process-based model evaluation and projections over southern Africa from regional and global climate models</td>
</tr>
<tr>
<td>7-P14</td>
<td>PUTRA I DEWA Gede Arya</td>
<td>Analysis of future changes in extreme climate indices in Indonesia region using AIMS</td>
</tr>
<tr>
<td>7-P15</td>
<td>RANA Arun</td>
<td>Intercomparison of Sea-Ice Observational and CMIP6 multi-model datasets</td>
</tr>
<tr>
<td>7-P17</td>
<td>WANG Muyin</td>
<td>How different Arctic do we see from CMIP6 models?</td>
</tr>
<tr>
<td>7-P18</td>
<td>XU Yangyang</td>
<td>Substantial increase in the joint occurrence and human exposure of heat and haze hazards over South Asia in the mid-21st century</td>
</tr>
<tr>
<td>7-P19</td>
<td>YANG Jing</td>
<td>Fidelity of the Observational/Reanalysis Datasets and Global Climate Models in Representation of Extreme Precipitation in East China</td>
</tr>
<tr>
<td>7-P20</td>
<td>ZHAO Siyao</td>
<td>Are Climate models reliable in projecting the impacts of half-degree warming increment on heat extremes over China?</td>
</tr>
<tr>
<td>7-P21</td>
<td>ZHAO Yin</td>
<td>Evaluation of CMIP6 models in the context of Precipitation over the Tibetan Plateau</td>
</tr>
</tbody>
</table>

*BSC will assume the costs of coffee breaks, lunch and dinner for each of the attendees. As such, said attendees agree to renounce the corresponding per diem expenses.