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PRocess-based climate slMulation: AdVances in high
resolution modelling and European climate Risk Assessment

Goal: to develop a new generation of advanced and well-
evaluated high-resolution global climate models,
capable of simulating and predicting regional
climate with unprecedented fidelity, for the benefit
of governments, business and society in general.

HighResMIP is a key deliverable of PRIMAVERA

The PRIMAVERA muse inspires us to

Core integrations in PRIMAVERA will form much of the European seek beauty in simulation; however,
contribution to CMIP6 HighResMIP, which is led on behalf of WGCM by HighResMIP is about understanding;
PRIMAVERA Pls. it is not a beauty contest.
Institution | MO KNMIIC3 | CERFACS | MPI AWI CMCC ECMWF
NCAS [ SMHICNR
Model names | MetUM | ECEarth Arpege ECHAM ECHAM CCESM IFS Consequently, we strongly
NEMO [ NEMO NEMO MPIOM FESOM NEMO NEMO . :
Atmosph. | 60-25km | T255-799 | T127-350 | T63-255 | T63-255 100-25km | T319-799 recommended against model tuning, so
zes., co;e - S— that most models tune the base model
t . z z .
Res. FCM " and then only change the resolution.
Oceanic Yao Yao Ya 0.4-Ve 1-Ya Ya Ya
Res., core spatially
variable
Oceanic 120 120 120 100 117140 (1716°)
Res., FCM spatially
variable




PRIMAVERA simulations for CMIP6-
HighResMIP

Atmosphere-land-only, 1950-2014 (—> 2050)
Forced by observed SST and sea-ice and historic forcings (= projected)
highresSST-present (2> highresSST-future)

—— - * Generating up to

1950 Historic forcings 2014 Future forcings 2050 [EEEESUSESE

highresSST-present highresSST-future analysed for the
next IPCC report

(ARG)

Coupled climate, 1950-2014 (—> 2050)
Forced by constant 1950 and historic forcings (= projected)
Initial coupled spin-up period ~ 30-50 years from 1950 EN4 ocean climatology
spinup-1950, control-1950, hist-1950 (= highres-future)
Future projected forcing 2050

2015-2050, hf_q/')res-fu’tugv

Historic 1950-2014 forcing
hist-1950

1950
Constant 1950’s forcing Constant 1950's forcing
spinup-1950 control-1950

SBP FIMAVER



Global Surface Temperature (K)

Climate change in HighResMIP
HadGEM-GC3.1
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Global precipitation biases as
we increase GCM resolution

Precipitation
change with
resolution

Bias
GPCP

Bias
TRMM3B42

AMIP CPL

[ — . . .
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Bias reduced [mm/day] Bias increased

P RIMAVER

Vanniere et al. Clim Dyn 2019
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Overview hydrological cycle in AMIP models
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Moisture convergence to land and land precipitation

(P'E)/PLand

Land precipitation due to

moisture convergence

Pland / Ptotal
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- Grid points models show a large increase of the fraction of land precipitation

explained by moisture convergence but the increase is moderate in spectral models.
- Grid points models show an increase of the fraction of total precipitation falling over
land, whereas spectral model show a decrease.

Vanniere et al. Clim Dyn 2019

EBP FIMAVERA



Role of orography BIPRIMAVER:

Partitioning of precipitation with a mask based on orographic precipitation
model of Sinclair (1994) applied to ERA-Interim.

Orographic precipitation Non orographic precipitation
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m EC-EARTH3.0.1 A ECMWEF-IFS-CPL A HadGEM3-GC31-CPL

Units 103 km? year-!

- Strong dependence of orographic precipitation on model resolution, especially in
grid points models (ex:CAM5.1, HadGEMB3).
- Large inter-model variations of non-orographic precipitation.

- When resolution of orography is degraded : APorog =-7.6 103 km? year-’
AQ  =-7.210% km?3 year
Vanniere et al. Clim Dyn 2019



Understanding precipitation and its distribution via river discharge over large catchments

River discharge (Q) for different forcings (P)

s Lowest Bias

P RIMAVERA

University of
@ Reading Omar Muller et al., in preparation



Understanding precipitation and its distribution via river discharge over large catchments

Maritime continent Andes
An assessment of model . N
orographic precipitation .
based on direct .
observations of river N
discharge .

Alaska-Canada Europe

o Attempt to infer from observed river
discharge which of LR and HR produce the
amount of orographic precipitation closest
to truth.
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o Remarkable agreement between HR and
OBS for catchements in four regions
characterised by complex orography.

FEIHHUERA E"e'ﬁﬁ'.tﬁg Omar Milller et al., 2019, in preparation



Understanding precipitation and its distribution via river discharge over large catchments

RIVER DISCHARGE [1000 km*/yr]

RIVER DISCHARGE [1000 km?/yr]
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TCI diff TCI diff
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Q[1000m3/s]

Discharge for the Niger river, driven by OBS, LR, HR
Not all precipitation sensitivity to HR is due to
orography: strong role of land-atmosphere coupling.
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HM=5.0 (orange) HM=4.3 HM=5.7
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Multi-model mean SST
difference between high
and low resolution coupled
models

5 models used, which have
a different ocean resolution
Stippling indicates where
at least half the models
agree on the sign

Multi-model mean of the
change in SST bias
between high and low
resolution coupled models
(using RMS difference
from EN4 1950-54 mean)
5 models used, which have
a different ocean resolution
-1.0 Stippling indicates where
at least half the models
agree on the sign

g e ; - .
- INRPRIMAVER
M. Roberts et al. 2019, in prep. the European Union




Significance: Coupling Coefficient
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Significance:
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Tropical Cyclones “emerge” at high resolution

Results finally confirmed by the US CLIVAR Hurricane Working Group
(HWG),
via a systematic multi-model intercomparison:

« TC tracks and interannual variability in frequency are credibly represented at 20km; [vs cumrturicaes
* however. intensitv is still underestimated bv some of the GCMs at this resolution

Shaevitz et al. 2015. Journal of Climate —
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TCs as rare, albeit significant contributors to climate ﬁ'g“;ﬁ'.t,y,"gf

Direct contribution to precipitation (%)

West Pacific Meso-America

‘ . o A A ‘ 10 20 30 40 50 60 70 80 90 %
F1G. 2. Monthly mean fractional contribution of TC rainfall amount to the total rainfall calculated using Contribution Of TCS to the extreme rainfall (amount fraction) (%) from JU'y to October,
TRMM 3842 raindall data. Units: %, employing TCs tracks from (a) IBTrACS, (b) JRA-55 and (c) ERA-Interim. Climatology for
1998-2015
Guo et al. 2017 Franco-Diaz et al. submitted to Clim Dyn.

Method: extracted TC tracks from IBTrACS and/or re-analyses, then
associated TRMM precipitation with each set of tracks, in a 5° disk around
each TC, every 6 hours.

Re-analyses very likely under-estimating the role of TCs in producing
precipitation and moisture transports.

National Centre for . . .
@A""P“S What is the role of GCM resolution, model physics, DA?



Tropical Cyclone track density:
65 year climatologies

(storm transits per month per 4 degree unit area)

Model Tropical Storm Track Density
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Roberts et al. 2018, in preparation
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Top 100 Tropical Cyclone composite structures
by resolution and model

ngh reso'ution Composite HR storms for: near_surface_windspeed LOW reSOIUtion
Cat: 880-920 mb  Cat: 920-945 mb  Cat: 945-965 mb  Cat: 965-980 mb Cat: 980-995 mb Cat: 995-1020 mb

ECMWEF-IFS

CNRM-CM6 HadGEM3-GC31

CMCC-CM2

EC-Earth3

Roberts et al. 2018, in preparation Co-funded by -F EIH HUERA
the European Union



One of the most important results in the
CLIVAR HWG experiment was this: skill at
representing interannual variability
improves with model resolution.
- Key to seasonal prediction of
hurricanes (and typhoons)

In 2015, as part of our work in the US CLIVAR
Hurricane Working Group
using our 2012 PRACE-UPSCALE data:

TC frequency, track density and interannual

Interannual TC frequency correlation with
observations (all/hurr) - 1 member

N96
N216

N512
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Year
Roberts et al. 2015. Journal of Climate
Previously also shown in Zhao et al. (2010) and Strachan et al. (2011)
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Roberts et al. 2018, in preparation
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Correlation with Obs Correlation with Obs

Correlation with Obs
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Is using single ensemble members
per GCM enough to robustly
represent interannual variability?

Multiple GCM resolutions of
ensembles, 2 tracking
algorithms

At least 6 ensemble members needed
in the North Atlantic to understand skill
in simulating interannual variability

3-4 ensemble members seem
sufficient in the West Pacific.

We do have a heterogeneous ensemble
in PRIMAVERA, but also small
ensembles of each GCM. = need to
revisit IV

Co-funded by
the European Union
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Summary and early conclusions

* First results from PRIMAVERA/HighResMIP
show that, as we increase resolution in the
atmosphere and the ocean:

* Some historic biases have been finally reduced: in
the sea, in the atmosphere, on land

* Models agree in their response to increased
resolution, over large portions of the globe, and we
can attribute the agreement to specific processes

* Evidence of stronger coupling between climate
system components, over narrow regions

* The HighResMIP protocol seems successful, despite
it being expensive and technically very challenging,
but we must bear in mind its limitations

* Resolution is no panacea, but its benefits in
terms of understanding outweigh the cost and
shortcomings

* We will continue to focus on process-based
analyses, to further understand their individual
role, and how this changes with climate change
(e.g. transports by cyclones, role of complex
topography, role of ocean eddies).

PRIMAVER




